estimate

estimate · analyze · plan · control

QuickCost 6.0

Introduction and Overview

Dr. Joseph Hamaker & Ronald Larson Galorath Federal

Background

- QuickCost is a top level parametric cost model
- Initially developed beginning in 2001 (by Hamaker) while with the CAD at NASA HQ
- Updated and evolved while with SAIC and TMGI up through Version 5.0
- Version 6.0 is a update to be completed by December 31, 2015 (midnight)

	QuickCost 1.0	QuickCost 2.0	QuickCost 3.0	QuickCost 4.0	QuickCost 5.0	
	Dissertation Proposal	Dissertation In Work	Dissertation Final	CAD Funded 2009	CAD Funded 2010	
Release date	October 1, 2004	December 1, 2005	February 1, 2006	September 1, 2009	January 31, 2011	
R ² adjusted	82.8%	77.0%	86.0%	88.4%	86.1%	
Number data points	122	131	120	120	132	
Total Mass	Х	Х	Х	Х	Х	
Power	Х	Х		Х	Х	
Design life	Х	Х		Х	Х	
Year tech/ATP date	Х	X		Х	X	
Reqmts stability/volatility	Х					
Funding stability	Х					
Test	Х					
Number instruments	Х					
Pre-development study	Х					
Team	Х			Х		
Apogee		Х				
Percent new		Х		Х		
Bus new					Х	
Instrument new					Х	
Planetary/Destination			X	Х	X	
ECMPLX			Х			
MCMPLX			Х			
Data rate%				Х		
Instrument complexity%				Х	Х	

QuickCost Architecture

only these two worksheets being updated

QuickCost is Microsoft Excel-based tool consisting of Currently

nine worksheets:

Worksheet Tab	Worksheet Content
Satellite DB	Historical database
Satellite Model	Main satellite cost model
Satellite Trades Model	Expanded capability model
Module & Transfer Vehicle DB	Historical database
Module & Transfer Vehicle Model	Module and TV model
X Vehicle DB	Historical database
X Vehicle Model	X Vehicle Model
Liquid Rocket Engine DB	Historical database
Liquid Rocket Engine Model	LRE Model

QuickCost Intended Use

- QuickCost, throughout its history, has been meant to be used to estimate the cost and schedule (i.e. total Phase B-D span) of NASA missions at...
 - Pre-Phase A
 - Phase A
 - Maybe Phase B (for the truly desperate)
- Another notion that QuickCost stubbornly adheres to is the idea that accurate cost and schedule estimating can be done at the top levels of the WBS
 - One does not need to count the trees to estimate the forest
 - In fact, details can be quite detrimental to good estimating
 - But that's another talk*

The Major New Distinguishing Feature of QuickCost 6.0

- For the Satellite database, QuickCost 5.0 included 132 data points (going back to missions launched in the early 1960s)
 - Obviously a lot of pre-CADRe data
 - Data from a wide range of sources
 - Including some Hamaker may have made up
- QuickCost 6.0 will use only CADRe data and only missions for which either a Launch or End-of-Mission CADRe exists as well as missions for which a CADRe+ has been developed
 - Ends up being 72 data points
 - Hopefully more accurately portrays today's NASA
 - Still provides plenty of degrees of freedom

QuickCost 6.0 Database From ONCE/CADRe

1	EOM CADRe+	AIM (Aeronomy of Ice in the Mesosphere)	15	CADRe Plus	Galileo Orbiter & Probe	29	LRD CADRe	KEPLER	43	LRD CADRe	New Horizons		LRD	STEREO (Solar Terrestrial Relations Observatory) [2
2	Post Launch CADRe	Aqua (Latin For Water) [formerly named PM-1 mission]	16	CADRe Plus	Genesis (including sample return capsule)	30	LRD CADRe	LADEE (Lunar Atmosphere and Dust Environment Explorer)	44	LRD CADRe	NOAA-N	57	CADRe LRD	observatories launched together] Suomi NPP (Suomi National Polar- orbiting Partnership) (Previously known as the National Polar-
3	LRD Post	Aquarius	17	EOM CADRe	GEOS I-M (Geostationary Operational Environmental Satellit	31	EOM CADRe	LANDSAT-7	45	LRD CADRe	NOAA-N Prime	58	CADRe CADRe Plus	orbiting Operational Environmental SWAS (Submillimeter Wave Astronomy Satellite)
4	Launch CADRe Plus	AURA [formerly named CHEM or Chemistry mission]	18	LRD CADRe	GLAST (Gamma Ray Large Area Space Telescope) [Renamed Fermi Gamma-ray Space Telescope]	32	CADRe Plus	LCROSS (Lunar Crater Observatoin and Sensing Satellite)	46	EOM CADRe	NUSTAR (Nuclear Spectroscopic Telescope Array)	60	LRD	TDRS K/L (Tracking and Data Relay Satellite)
5	EOM CADRe+	Cassini & Huygens Probe	19	LRD CADRe	GLORY	33	LRD CADRe	LDCM (Landsat Data Coninuity Mission)	47	LRD CADRe	OCO (Orbiting Carbon Observatory)	61		Terra (Latin for "Land") [Formerly named AM-1 mission]
6	CADRe Plus	CHIPSat (Cosmic Hot Interstellar Plasma Spectrometer Satellite)	20	LRD CADRe	GPM (Global Precipitatino Measurement) GRACE (Gravity Recovery and	34	LRD CADRe	LRO (Lunar Reconnaissance Orbiter)	48	LRD CADRe	OCO 2 (Orbiting Carbon Observatory)	62	LRD CADRe	THEMIS
7	Post Launch CADRe	CloudSat [dual launch with Calipso]	21	EOM CADRe	Climate Experiment) [Two Spacecraft but cost and cost drivers reflect one]	35	CADRe Plus	Mars Odyssey [Mars Surveyor 2001 Orbiter]	49	CADRe Plus	OSTM (Ocean Surface Topography Mission)	63	CADRe Plus	TIMED (Thermosphere, lonosphere, Mesosphere, Energetics and Dynamics mission)
8	CADRe Plus	COBE (Cosmic Background Explorer)	22	EOM CADRe	GRAIL (Gravity Recovery and Interior Laboratory)	36	Non CADRe Sources	Mars Pathfinder	50	EOM CADRe	Phoenix	64	CADRe Plus	TRACE (Transition Region and Coronal Explorer)
9	LRD CADRe	DAWN	23	LRD CADRe	IBEX (Interstellar Boundary Explorer)	37	LRD CADRe	MAVEN (Mars Atmosphere and Volatile Evolution Mission)	51	EOM CADRe	QuikSCAT	65	CADRe Plus	TRMM (Tropical Rain Measuring Mission)
10	LRD CADRe	Deep Impact Flyby Spacecraft & Impactor	24	CADRe Plus	ICESat (Ice, Clouds, and Land Elevation Satellite)	38	CADRe Plus	MER (Mars Exploration Rover) Lander [Two Rovers but cost and cost drivers reflect one]	52	CADRe Plus	RHESSI (Reuven High Energy Solar Spectroscopic Imager)	66	LRD CADRe	Van Allen Probes (previously known as Radiation Belt Storm Probe (RBSP)
11	EOM CADRe	DS-1 (Deep Space 1)	25	EOM CADRe	IMAGE (Imager for Magnetopause to Aurora Global Exploration)	39	CADRe Plus	MGS (Mars Global Surveyor)	53	CADRe Plus	SDO (Solar Dynamics Observatory)	67	CADRe Plus	WIRE (Wide Field Infrared Explorer)
12	Post Launch CADRe	EO-1 (Earth Observing 1)	26	LRD CADRe	IRIS (Interface Region Imaging Spectrograph)	40	EOM CADRe	MRO (Mars Reconnaissance Orbiter)	54	CADRe Plus	SORCE (Solar Radiation and Climate Experiment)	68	EOM CADRe	WISE (Wide-field Infrared Survey Explorer)
13	CADRe Plus	FAST (Fast Auroral Snapshot Explorer)	27	CADRe Plus	JASON I	41	LRD CADRe	MSL (Mars Science Laboratory) (Curiosity Rover)	55	EOM CADRe	Spitzer Space Telescope (formerly SIRTF-Space Infrared Telescope Facility)	69	CADRe Plus	WMAP (Wilkinson Microwave Anisotropy Probe)
	LRD	GALEX (Galaxy Evolution		LRD			CADRe	NEAR (Near Earth Asteroid Rendezvous) [renamed NEAR		EOM	Stardust & Sample Return			

Cost Data Structure

 Cost fields in the updated database include the 11 cost elements contained in the NASA Standard WBS

QuickCost 6.0 Cost Output

- The major focus of the regression CERs and SERs in QuickCost 6.0 is being expended on WBS 5.0 (Spacecraft Bus) and WBS 6 (Payloads/Instruments)
 - The Spacecraft Bus will be estimated in total at the system level—no subsystem visibility)
 - Ditto each individual instrument
 - Based on several "instrument type" CERs/SERs

 The other 9 WBS elements will (probably) end up being cost to cost percentages (still a little TBD)

Variable Identification (1of 2)

- Starting point was the set of variables that have shown correlation with the cost and schedule of NASA missions in QuickCost 1.0 through 5.0...
 - Dry mass (kg)
 - BOL Power (watts) LEO Equivalent
 - Design life (months)
 - Destination (earth orbital, planetary)
 - ATP date (as a proxy for improvements over time in NASA productivity*)
 - Heritage (as Percent New Design)
- New variables being investigated...
 - Propellant load mass (kg)
 - RCS type (cold gas, mono-prop, bi-prop, dual mode)
 - Stabilization type (spinner/GG, 3 axis)
 - Array configuration (body mounted, deployed)
 - Array material (Si, GaAs)
 - Array areas (meters²)
 - Battery type (NiCd, Super NiCd, NiH2, LiIon)
 - Battery capacity (amp-hours)
 - Thermal control (passive, active)
 - Data rate (kbps relative to ATP SOTA)
 - A number of others.....

Variable Identification (2 of 2)

- Variables are being selected with the aid of standard statistical testing (t-tests) and good old common sense
 - Sensical algebraic signs on coefficients
 - Variables who cost driving logic can be explained in engineering terms
 - Variables that are "knowable" (excludes Chief Engineer's shoe size)
- And mainly quantitative variables
 - But Heritage or Percent New Design will still be an optional variable
- QuickCost 6.0 will provide the user with the capability of performing multiple estimates based on statistically acceptable CERs and SERs (see next chart)

Multiple Estimates

		Estimate Based On:								
Variable	Inputs	Mass Only	Mass & Power	Mass & Data Rate	Mass and Design Life	Mass, Power & Data Rate	Mass, Power, Data Rate & Design Life			
Total Dry Mass (kg)	620.0	V	V	V	V	V	V			
Total Power (watts)	700.0		V			V	V			
Data Rate (kbps)	20,000.0			$\overline{\square}$		V	Ø			
Design Life (months)	48				V		$\overline{\mathbf{Q}}$			
Resulting Cost Estimate		\$242M	\$259M	\$251M	\$263M	\$248M	\$256M			
Resulting Scheudle Estimate		39 months	42 months	41 months	44 months	43 months	45 months			

- Rather like the National Hurricane Center (NHC) using many models to predict the track and intensity of storms
- Different models use different variables and give different results

Regression Analysis and Model Structure

- Both Cost Estimating Relationships (CERs) and Schedule Estimating Relationships (SERs) are being developed
- Minitab is being used as the industrial strength regression package
 - Regression equation
 - Table of coefficients with SE, t and p statistics
 - S, R², R²-adjusted
 - ANOVA table
 - Unusual observations
 - Etc.

JCL Technique Development

- QuickCost 6.0 will calculate both total cost and total schedule for proposed missions
- The model calculates the standard error of the estimate for both CFRs and SFRs
- And uses the SE to calculate prediction intervals around both cost and schedule estimates*
- The model will convolve these two probability distributions into a joint probability distribution (similar to NICM approach)
 - Thus the JCL will be based on the assumption that the scatter in the data encompasses all uncertainty (i.e. no probability ranges will be needed for input variables)

*Thanks to Andy Prince (NASA MSFC), Matt Pitlyk and Brian Alford (Booz Allen Hamilton) who provided the methodology for multivariable Prediction Intervals in the March 2015 "Ask A Cost Analyst" column of ICFAA World

Summary

 QuickCost 6.0 will provide updated and enhanced capabilities for straight-forward and transparent estimation of proposed NASA missions based on validated historical databases

 Remember....coming to you December 31, 2015 (midnight)